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THE EIGENVALUES OF
NON-SINGULAR TRANSFORMATIONS

BY
JON AARONSON

ABSTRACT

The eigenvalues of a non-singular conservative ergodic transformation of a
separable measure space form a Borel subgroup of the circle of measure zero.
We show that this is the only metric restriction on their size. However, the
larger the eigenvalue group of the transformation, the “less recurrent” it is.

§1. Non-singular transformations

Let (X, %, m) be a separable probability space and T : X — X a non-singular,
conservative ergodic transformation.

A measurable function f: X —C is called an eigenfunction if there is a
complex number A € C (eigenvalue) such that f(Tx) = Af(x) for m-a.e. x € X
The conservativity of T implies that all eigenfunctions have constant modulus,
and hence that all eigenvalues are unimodular. The ergodicity of T implies that
eigenfunctions are unique up to constant multiplication.

We consider the collection of eigenvalues of T, which we denote by:

e(T)={s €[0,1): 3f, : X > T measurable such that f,(Tx) = e*™f, (x) a.e.}.

(Here, T={A €C:|\|=1}.) Clearly, e(T) is a group under addition mod 1.

If T has a finite invariant measure P ~ m, then the eigenfunctions {f. }.c.(r)
form an orthonormal system in L *(P) which is separable, so e(T) is countable. (If
T is allowed to be a finite measure preserving transformation of a non-separable
measure space, then e(T) can be any subgroup of [0, 1).)

It is known that, in general (when X is separable), e(T) is a Borel subset of
[0,1) and there is a jointly measurable function (Lebesgue X Borel) f: X X
e(T)—T so that
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f(Tx,s)=e>™f(x,s)  for every s,x € X,

where m(X\X,)=0.

One way to prove this result is by considering the operator Pg = gg°T on
unimodular measurable functions g. This operator is actually well defined on
equivalence classes of constant (unimodular) multiples of such functions. On
such objects, it is one-to-one by the ergodicity of T, and continuous with respect
to convergence in measure of these classes. The collection of these classes g for
which Pg is constant is closed and hence a complete separable metric space. The
constants obtained are clearly eigenvalues of T. Thus e(T), being the continu-
ous, one-to-one image of a complete separable metric space, is a Borel set. The
required function f is obtained by choosing a version of a suitable lifting of P’
to the unimodular functions.

It now follows from the conservativity of T that e(T) is a weak Dirichlet set,
that is, whenever p is a probability measure charging e(T) (p(e(T))=1):

1
llm Il _ e21rms

n—x JO

*dp(s)=0

(see [4], [9]). In particular, e(T) has Lebesgue measure zero. Our first example
shows that this is the only metric limitation on the size of e(T): for every gauge
function p :[0,1]—[0,] satisfying p(t) 10, p(t)/t 1 as t}0, there is a
conservative ergodic transformation T of a separable measure space, with a
o-finite invariant measure, so that the p- Hausdorff measure of e(T) is positive.

However, transformations with large eigenvalue groups are forced to be “less
recurrent”. The term “less recurrent” refers to a concept introduced by Krengel
(8))-

Let T: X — X be a conservative ergodic transformation of (X, %, m). Let
T:L'(X,m)— L'(X,m) be defined by

f— dm; =f fdm —dm; - T™'[dm = Tf.
Then [« Tfgdm = [xfg - Tdm, and the Chacon-Ornstein theorem states that:
n—1 n—1
> T'f(x)/z T'g(X)-*f fdm/f gdm a.e.
r=0 r=0 x x

for f, g€L’, [ gdm#O0.
Using this, one can show ([8]) that if u, | 0 as n | « then:

either 2 u,T"f(x)=0 ae. foreveryf=0, f fdm >0,
n=1 x



Vol. 45, 1983 EIGENVALUES OF TRANSFORMATIONS 299

z T"f(x)<o ae. foreveryfz=0, dem<oo

In the former case, T is called u,-conservative, and in the latter case, T is called
u, -dissipative.

In case T has a o-finite invariant measure p ~ m, then u,-conservativity
corresponds to:

o

D uf T == ae. foreveryfz=0, f fdu >d,

n=1

and u,-dissipativity corresponds to:

x

> uf T <o ae. foreveryf=0, ffdy,<00‘

n=1

It is known that T has a finite invariant measure iff T is u,-conservative
whenever 2, _, u, = .
It turns out that:

THEOREM 1. If the Hausdorff dimension of e(T) is larger than o € (0,1), then
T is 1/n'"*-dissipative.

Our second example shows that this proposition is sharp in the sense that:

For every a € (0, 1) there is an ergodic, 1/n' ® -conservative transformation of a
separable measure space with a o -finite invariant measure whose eigenvalues have
Hausdorff dimension «.

In §2, we prove Theorem 1, and Theorem 2 — a related result. In §3 we recall
the definition of, and some facts about, dyadic towers over the adding machine.
§4 is a lemma on Hausdorff measures (probably well known, but the author
knows no reference). Examples are constructed in §5.

§2. Proof of Theorem 1

Under the assumption that the Hausdorff dimension of e(T) is greater than
a + €, we have, by a theorem of Frostman (see [3], [6]), that there is a probability
measure p on [0,1) satisfying p(e(T))=1, and p((a,b))= M(b —a)*"*. This
implies that:

b= [ e.c-s)apepi<=
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where

1

PO Gl

Now ®, is convex on (0, 1) and so ([6]) D.. (n) > 0 (. (n) = 5 e>™ ®,(s)ds) and
this means that ([6]):

S 1B =f <= ()= [ edp(s))
It can be shown ([6]) that

const
n 1-a

d, (n)~
and so, recapitulating, we have

pe(T)=1 and 2 |p(n)f/n"™™ <.
n=1
Next, we set

G ={g :[0,1] - T measurable}

and
4@ ={ [ 186 -ho)Paps)]

Then (G, d,) is a complete separable metric space, and a topological group under
pointwise multiplication.
The above-mentioned function

f:Xxe(T)>T, f(Tx,s)=e"f(x,s)

yields a function I1: X — G satisfying II(Tx) = goll(x). (Here, go(s) = e’™ and
I{x)(s) = f(x,5).)

Let A(ge)={x€X:d,(Tl(x),g)<e}. Choose hEG so that
m(A (h,1/2))> 0. Suppose that x €EG, n =1 and T"x € A(h,1/2). Then

dp (b, TI(x)) <3,  d(h,I(T"x))<z
SO

d, (1, g3y = d(Il(x), g3T1(x)) = dp (Il(x ), [(T"x)) < 1.
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Now d,(1,85)=2(1-Rep(n))<1 entails |p(n)|ZRep(n)=1/2. Rewriting
this, we have that

Lagan(X) acan(T"%) = Lapay(|p(n)])-
Dividing by n'™®, summing over n and integrating over X we get:
< _ 1 < a .
2 mARYNT"ARY) == 2 (10" Nan(|H(n)])
n=1

1
n=1 n

A

4 3 |p(n)fn' <o,
n=1
In other words,
z (1/711_“)?" IA(;;,1/2)<°° a.6. on A(k, 1/2)
n=1

and T is 1/n'"* -dissipative. 0

More generally suppose that &:(0,1)— [0,») is convex, and integrable on
(0,1), d(t) 1 as t | 0. As remarked before, ®(n)=0.

Let E C [0, 1] be a Borel set. One says ([6]) that the ®-capacity of E is positive
(® — cap E > 0) if there is a probability measure p on [0, 1] with p(E) =1 and

fol f (|t = s[)dp(s)dp (1) = 2 &(n)[p(n)f <.

Any such measure p satisfies p((a, b)) = M/®(1b —a|) and so the existence of
such a measure ensures that the 1/®-Hausdorff measure of E is positive. The
latter part of the proof of Theorem 1 can be used to prove:

THEOREM 2. Suppose that ® is such a function and ¢, < &(n),co L 0asn 1.
If ®—cape(T)>0 then T is c,-transient.

This theorem has content when there is such a c,, with 2 ¢, = =, for example
o=0,

We conclude this section with some more examples of functions ® for which
Theorem 2 has content.

Suppose that O(x)=P(1—-x), P(x)1 as x | 0. If £°®"(¢) | as ¢ | then
&(n)~C, [ 0as ntw

It

P@)~SLE)  (xl0)
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where L(x) is slowly varying ([2]) as x | 0 and 2 = y <3, then it can be shown
using the theory of slowly varying functions that

P 1 ., (1) _ 1 1
®(n) ~ const e b (n) = const v L (n)
which decreases in n.
Note that ®%(t) ~ a(a +1)/t*** as t | 0, and hence $(n)~ const/n'™. If

®,(t) =log. (1/]sin 7t |),

then
const

n

. const 2
Tog(t) ~ PR Diog(n) ~

as n-—>wx,

§3. Dyadic towers over the adding machine

All of the examples to be constructed are dyadic towers over the adding
machine.

Let QO ={0,1}", and o be the o-field generated by cylinders. Suppose x € .
Then x =(e((x),e2(x),--+). Define I(x)=min{n =1:¢,(x)=0}. Then, x =
(1---1,0, &10)+1(x), - - - ). Define

7(x)=(0---0,1, e1sy(x), -+ *).
It is easy to see that for every x €, n =1
{(e(7"x), ex(T*x), -, £a (7¥x)): 0=k =2" - 1} = {0, 1}"

and hence that 7 preserves the measure P = (3,3)" and is ergodic (one proves
constant limit in the ergodic theorem for functions depending on finitely many
coordinates &,).

Recall from [1] that the dyadic height function with heights {y(n)} (y(n)€
N,nz1)is

e(x)=y((x)),

and that the dyadic tower over the dyadic adding machine (X, B, u, T) with
height function ¢ is defined by

X={(x,n):e(x)Zn =1},

B

il
<

(‘91 n [‘P = n]’ n),

m =3 Punipznin»
n=1
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(x,n+1) f e(x)=n+1,
T(x,n) = {
(=, 1) ife(x)=n

Then ([7]), (X, %, m, T) is a conservative measure preserving transformation,
and ([5])

m(X)zf @dP = 2 y(n)
[¢] n=1
Set 8(0)=y(1)and B(n) =i, 2" “y(k)+ y(n + 1) (called a growth sequence
in {1]). Then
y(n)=B(n—1)—EB(k) for n 22.
k=0
It will be convenient to determine the dyadic tower over the adding machine,

T, by determining the sequence {8(n)};-o C N with B(n)>Z;2; (k). We then
call T the dyadic tower with growth sequence {B(n)}. This is because ([1]):

2n—y
er 23 pertZB(n-1) and Pler=Bn)=1
=0

Let c(n)=sup{k = 1: B(k)=n}. It was shown in [1] that T is rationally
ergodic with asymptotic type equivalent to 2°*”. From this follows a property
which we shall need:

there is an A € B, m(A)> 0 such that for every BE 3B, BC A, m(B)>0:

n-—1
> m(BNT*A)R2°™.

k=0

PROPOSITION 3. Let u, | 0 as n 1 », and {8(n)} be a growth sequence. The
dyadic tower over the adding machine is u.-conservative iff £._, (U, — tn11)2°" =

m-

ProoF. Let A be as in the above property:
Dot dao T = (Un—~thnws) 2 Tao T since un =t
n=1 n=1 k=1
If T is u,-conservative, then

2 wlaoT" =® a.e.
and

] Eu,.IAonm E(un u,.ﬂ)kilm(AﬁT‘“A)
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which implies that
S (U — 2@ =00 since Y m(A NTFA)<2°.
n=1 k=1

If T is u,-dissipative then X}, u,14°7" <o a.e., and there is a set B C A,
B € B, m(B)> 0 such that

oo>f E U 1a o Tdm = E (Un = Uns1) i mBN T A)
B k=1

n=1

which implies that

£

> (U — Uner)2° W <0 since > m(BN T A)>2"". O
&=

ProPOSITION 4. Let T be the dyadic tower over the adding machine with
growth sequence B(n):

@) If s €[0,1] and Z;_,[1—e>™ ™| < then s € e(T).

(b) If s Ee(T) then ™" — 1.

PrOOF. (a) is proved in [4] (see also [1]). To see (b) note that s € e(T) iff

there is a measurable function f:Q—T with for =e”™"f, whence for” =
e>™"f for n = 1. It is easy to see that g o 7" —> g in measure for any g : Q—C

measurable (since £ (7°x) — &, (x)). Hence ™2 — | in measure, and, since
n—wo

P((pzn :B(n));%’ elm-‘B(") 1. D
e

The examples 7 we construct wiil have growth sequences of the form
B(n)=2"", 8(n)< 8(n +1) where {§(n)}i-1=KCN,

K = U [nk,nk+mk]ﬂN (nk+1>nk+mk+k)’

k=1

and we will write T = Ty, B(n)= Bx(n) etc.
We have cx(n)=KN[1,[log.n]] and hence a.(T)n2%". Given a set
L CN, set

A(L){ 2; =O,1ands,.=0fornEL}.

We shall need to know when Hausdorff measures of A(L) are positive, since, if

= U [nk,nk+mk]ﬂN and K1= U [nk,nk+mk+k]
k=1

k=1
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where ng. > n + my + k, then:
A(K]) g e(TK).
This is because, for s € A(K,):

n 1 .
(2 "*&S‘))gw , O0=sj=m.

and so:

S 1= | =4 3 S [sin(r2ns)|
n=1 k=1 ;=0
Z

whence (Proposition 4 part (a)): s € e(Tk).

H/\

||M5

sy =4

§4. A lemma on Hausdorff measure

LEMMA 5. Suppose that K CN and p :[0,1]—[0,], p(¢) | 0 as t | 0 and
p(2t)= Mp(t) for t >0.
Then, lf AK,p = lim,._,,,p(1/2")2"*“‘f"“»"ll’

?;—;I" = H,(AK)) = Ax,.
In particular, the Hausdor(f dimension of A(K) is 1— lim,—.(1/n)|K N[1,n]|.

PrROOF. For n=1, @ =(w,' '+, w.)E{0,1}", let

a-(w)={s=222,'5;5,(=0,1ands,=w, forléjén}

(sets of this form are called dyadic intervals) and let
I, = {o(w): @ €{0,1}", o(w)N AK) # T}.
From the definition of A(K), we see that
I, ={o(w): @ €{0,1}", o, =0for k EK, 1 =k = n},
and hence that |I1,, | = 2" Thus

H (A(K)) = hm P (21 ) on- JKO[1,n)l _ Ax
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Suppose H, (A(K))=H <. Let £ >0, then for every n =1 there are open
intervals I,,L,---, L,--- such that A(K)C U, L, Sioip(|L|)<H+¢ and
[I.| = 1/2""", where |I| denotes the length of I.

Now A(K) is clearly compact and so IN such that

AK)C C) L.

For any interval I C [0, 1) there exist dyadic intervals o4, 0> so that I C oy U o,
and |1|<|a| = |os| =2]1].

From this we deduce that there is a finite collection II of dyadic intervals so
that A(K)C U,eno, |o|=1/2" and Z,enp(|o|)<2M(H +¢).

Now, if o and o' are dyadic intervals and |o'|=|o | then

either o'Co or o'Noc=4.
Thus, IT can be chosen to be disjoint.
Next we set
1
A(o)=log, T (A(o(wy, -+, @a)) = n).
Letmin{A(0): 0 €EII} =qu=n and max{A(c): 0 EM}=qn+ra (r=0).Ifr=0
then A(c)=¢q Vo €11 and
=1, ={o(w): ® €{0,1}%, o« =0 Vk EK}.
So
MH+e)> T p(lo)=p(5) 20 (gzn)
oE 4

In general, rs=1 and we next show that there is a ¢'= q so that

2 pUah= 2 p(la)).

This is done in stages by showing that there is a collection of disjoint dyadic
intervals II' so that

AK)C U o, qu=qn and rp=rm—1.
o€l
Writing w(oc)=w where o =o(w), and A(0)=A(w(c)) write W=
{w(c): o €I1}. For every @ E W, @ = (w1, @3, * *, @y, Wg+1, * **, Wq+v) where
0=v =ry. Write @ =(60,n) where 8 = 8(w) = (w,, "+ *;w,) and
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(Wq+1," " *y Wgew) ifvz=1,
n=n(w)=
& if v=0.

(We are introducing the conventions (w, )=, A(D)=0 and {0,1}"={Z}.)
Clearly

{0(w): 0 €T} =11,.

For 0 €11, set P ={n(w): 8(w)= 8}. Since Il is a disjoint collection, either
@l and P, = or A(n)>0 for every 55 € Ps.
Now,

I= Y {0(6,m): n € Pe}.

eEll,
Moreover, for every 6 €11,,
U ¢2 U o
oell o€Il, 4,
O(w(a)=0 8(wr(a))=0

In other words, for every 6 €11,

U o(m)2{e €{0,1}: &, =0 whenever q + k € K}.

nEPy

This shows that for every 8, €11,:

U U a@n)2 U o2A(K)

eI, 'qEP,l o€lly,,

We have that

Zelob= 3 3 o(zm).

6€ll, nEPy
Choose 8, €11, so that 2,cp, p(1/2*™) is minimal. Set
II'={(0,7m): 0 €11,, n € Po}.

Then from the above:

AK)C U o and 5 p(lol)= 2 > p(yxlm)é‘r;p(lol)

by the choice of 8o. If Ps, = {D} (a(8,) €IT) then [T’ =11, and riy = 0. If not, then
quzgntl, but gn+rop =gn+rgyielding rn = rq— 1.
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A maximum of ry such stages will show that there is a ¢’ = n with

p (51(,—) 207N = IM(H + €).

But for every £ >0 and n =1 there is such a ¢'=n and so Ax, =2MH.
We have shown that Ak, < iff H < and in this case Ax,/2M = H = Ag,.
For p.(t) =t", we have that H, (A(K))>0 iff Ag,, >0 iff

lim((1-a)n = [KN[1,n]])> —o,

whence the Hausdorff dimension of A(K) is

sup{a : H, (A(K))> 0} =sup{e :lim (1 —a)n —|K N[1,n]|)> —}

n—x

1
=1-Tm~|KN[1,n]]. O

We are now in a position to present

§5. Examples

ExampLE 1. Given p(¢) |0, p(t)/t 1« there is a tower over the adding
machine, T, so that

0<H,(e(T))
(this example is interesting when p(¢) is small, and p(t)/t T = slowly).

To construct such an example, we find n., me = 1, ney > i + my + k and set
K:U [nk,nk+mk]ﬂN, K1=U [nk,nk+mk+k]ﬂN
k=1 k=1

and T = Tx. We will have that A(K,) C e(Tx) and so it will suffice to choose n,
my so that H, (A(K))) >0, or, equivalently (Lemma 5):

timp () 2501,
To get this, we will have
|[KiN[1,n]|=n—-R(n) foreverynzl

where R(n)=1logl/p(1/2").
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Since p(t)/tTast|,n—R(n)? asn 1, so this latter condition is equivalent
to

k
2m,+k k2+1 =|Klﬂ[1,nk+mk+k]'§nk+mk+k—R(nk+mk+k)
1=1

or
k—1
k(k—1
Em,énk—R(npl-mk-l-k)—J—z——) for every k.
1=1
To construct sequences ni, Mx, M > M + my + k satisfying this choose m;,
n, arbitrarily. Since n — R(n) increases, there is an n,=n, +m; +1 so that
mi=n,— R(n;)~3.

Now R(n)? and n—~R(n)1 as n1 so 0=R(n+1)—R(n)=1. Hence
R(n,+3)— R(n;)=3, and setting m, =1, we have

mlénz—R(n2+m2+1)+(R(n2+m2+1)—R(n2))—3
§n2_R(n2+m2+1)_’1.

Next, suppose n;-- - m_, m;- - ny_ have been constructed. Choose n, >
N1+ Mgy + k so that

k—1 —
2 m, < M —R(nk)—2k _ﬂk_z_l) .
=1

As before R(m +2k)— R(n)=2k so setting m, = k, we obtain that

k

1

m, = n ~ R(n + me + k) + (R (ne + my +k)—R(nk))—2k—ﬂk2—_9
_§nk—R(nk + my +k)—ﬂ£2_—1) .

1

~
I

The set K = U,_, {7, i + my ] having the required properties is thus con-
structed inductively.

ExaMPLE 2. Given a € (0, 1) there is a tower T over the adding machine so
that a.(T)> n® (which implies by Proposition 3 that T is 1/n" -conservative) and
the Hausdorft dimension of e(T) is (1 - a).

Again, to construct the example, we will find n., m, ma>nm +m +k
defining K and K, as before and setting T = Tx. To get the required properties
for Tk, we will arrange

|[IKN[t,n}|Zzan—-1  for a.(T)>n"
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and
-— 'Kl ni, "]'
llm——n—

n—ac

=a for Hausdorff dimension of ¢(T) at least (1 — a).

It follows from a.{T)> n” that T is 1/n"-conservative, whence by Theorem 1,
the Hausdorff dimension of ¢(T) is at most 1 —a.

To get m,, m; with the required properties, set n. =k’ and m, =
[@(3k*+3k +1)]+ 1. Then:

ek’ =|K N[ K| <ak’+k,

and it is easily checked that [K N[1,n]|Zan for n=1.
Next, we see that

KN {L K+ my+ k] =K N {1, Gk + 17|+ EEEED
Sak+1)+ gk—_;lLk
Sak’+m +k)+ M(k*+m +k)” (some M <x)
and it is easily checked that
|KiN[1,n]]|= an + Mn™".
This completes the construction of Example 2.

We now discuss possibilities to improve Theorem 2. As mentioned before, if
¢ :[0,1] > (0,) is convex, ¢(x) 1 ®as x | O or x 11, and E C[0,1] is measur-
able, then ¢ —cap E >0 implies that H,,(E)>0. The author knows of no
ergodic non-singular transformation of a separable measure space T with
H,..(e(T))>0 and T $(n)-conservative. It will follow from our concluding
proposition that no dyadic tower over the adding machine of form Tk can have
this property when ¢"(x) is regularly varying near zero with index y &
(=3, -2}, and ¢(x)=¢(1—x).

PROPOSITION 6. Let ¢, } 0, Zi_yc = C(n)t e and p(x)~1/C([1/x]). Let
K CN and let T be the dyadic tower over the adding machine with growth
sequence B(n)=2“" where {k(n)}=K.

If H,(e(Tx))> 0 then Tx is c.-dissipative.

(In case ¢ is convex, ¢(x)= ¢(1—x) and ¢"(x)~ L(x)/x" as x | 0 where L(x)
is slowly varying and 2=y <3, one has that:

am~q=§:me
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whence it follows that

@(x)~const C([1/x])asx | 0.)

ProoF. First, note that there are integers n, =1 and m =0 (k €EN) such
that meo = ne +me +3; n, e +m €K, K C U:=1[nk,nk + my] 2 K, and also
such that if n € K and for some k, n, =n = n, + my — 1 then either n +1 € K|
ornt+t2€K

Next, by Proposition 3, Tx is c.-dissipative iff ;- (¢, — €4.1)2¢"” <. Here
cx(n)=|K N[l,logn]| and it follows that Tx is c,-dissipative iff

SR S o2 0 <o

nekK

We will show that, when H,(e(T«))>0, S(K,)<«. This suffices because
S(K)= S(K)) (as K CK)).
Set K> = U, [, m + my +2]. Then

leﬂ[l,nk +mk]l=lKlﬂ[1,nk +mk]|+2(k—1).

Set for g = 1:
A= {s = b e [0,1]: . =0,1 and for every k = q:

E"k+1 = 8”k+2 == gnk+mk+2} .

By Proposition 4(b), if s € e(Tx) then

2Zmi2ns 1
n-—»x
neK

and so for some q: (((2"s))) < 1/2° for every n = n,, n € K. It follows from the
construction of K, and K, that this entails (((2"s))) < 1/2’ for n Z n,, n € K; and
this in turn implies that s € A,.

Hence e(Tx)C U,-, A, and if H, (¢(Tx))> 0 then, for some q = 1: H,(A,)>
0.

For n =z 1 let I1,, denote the coilection of dyadic intervals of length 1/2" which
intersect A,. Since H,(A,)>0, we have that inf,-, p(1/2")|IL.| > 0. Now

n +m —|K.N{l,n +m Ji+n +k
IH"k+’"kl§2k * - ko .

Whence (taking logarithms) there is a constant M < such that
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| Kz N (1, + mie] | = me+ my + k +logap (1/277™) + M

=nm +m +k —log, CQ™™)+ M.

Thus:
'K] ﬂ[l,nk +mk]| =|Kzﬂ[1,nk +mk]'_2k +2
=m+m—k—-1log CQ™"™)+M +2.
But:
S(K)= 2 3 cm2inttnen)

k=1 n=0

and now
i nk+"2|xln[1,,.k+n]| - k nk+"2|Kln[1’nk+"Ik]I_Mk+”
é 2M+2 2 2nk+nc 2"k+"/2kc(2nk+mk)
n=0

=M'/2*

which means S(K,) < . O
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